

Infection transmission risk and different testing strategies

Roger Y Dodd, PhD ISBT, Kuala Lumpur December 1st, 2013

Outline

- Rationale for testing
- Nature of infection
- Markers for testing
- Test properties
- Need for confirmation
- Assessment of risk
- Fitting test program to environment

Rationale for testing

- Identify those prospective donors whose blood would infect recipients
- Compensate for failures of selection and questioning
- Avoid undue wastage from non-specific selection procedures

What to test for?

- Agent itself
- Component of agent
 - Antigen, nucleic acid
- Host response to agent
 - Specific e.g. antibody
 - Non-specific e.g. disease marker (ALT)
 - Other surrogate

Surrogate tests

- Generally neither sensitive nor specific
- Cannot be confirmed
- Difficult to interpret for affected donor
- Have been controversial in the past
 - e.g. anti-HBc and HIV/AIDS
- Little used currently
 - China: ALT as a rapid pre-test for hepatitis

Nature of infection

- Time
 - Acute, chronic
- Symptomatic/Asymptomatic
- Intensity
 - High titer, low titer
- Sequence
 - Infection, nucleic acid, symptoms, antigen, antibodies

Simple, acute infection

- Examples; WNV, DENV, CHIKV, HAV, HEV
- Virus (RNA) is first marker
- Antigen may follow
- Peaks rapidly
- Declines as symptoms, Ab occur
- Generally non-infectious once IgG is apparent

Acute WNV infection parameters, based on follow-up of 290 infected donors

Dengue Seroconverter (DENV-1)

Testing strategy for simple acute infection

- Viral nucleic acid
- Viral antigen
 - Tends to be less sensitive i.e. detects fewer infectious donations
- Some IgM –positive donations may be infectious, but IgM testing would miss the majority of cases

Simple chronic infection

- Example: Chagas disease, (HTLV)
- Early (childhood) infection
- Few, if any new infections among donors
- Lifelong infection/infectivity
- Coexistence of pathogen and corresponding antibody

Testing strategy for simple chronic infection

- Direct detection of pathogen
 - Usually not sensitive enough, as levels tend to be low or variable
- Antibody testing
- In the absence of incident cases, one-time testing may be acceptable
 - With adequate data management

Simple chronic infection with adult incidence

- Examples: HCV, HIV, malaria, babesia
- Early infection asymptomatic, but infectious with "window" in which serologic tests are nonreactive
- Subsequent prolonged infectivity with circulating pathogen
- Most infectious donors can be detected with antibody tests

HCV Panel 6211 – Virologic/Serologic Profile

HIV Panel 6240 – Virologic/Serologic Profile

Testing strategy for chronic infection with adult incidence

- The majority of infectious donors will be detected by an antibody test
- Residual infections from window period
 - Improve sensitivity of Ab tests
 - Add Ag detection if appropriate or
 - Add NAT
- NAT alone will not detect all infectious units

Hepatitis B is unusual

- Chronic, with childhood and adult onset
- Overproduction of viral antigen (HBsAg)
- Two key antibodies
 - Anti-HBs not associated with viral persistence
 - Anti-HBc may signify viral persistence
- DNA tends to parallel HBsAg

HBV Panel 13867 Virologic/Serologic Profile

Testing strategy for HBV

- Minimum strategy is to test for HBsAg
 - Identifies the majority of active infections, but not OBI or WP
- Additional testing improves safety
 - Anti-HBc and/or
 - HBV DNA
- Anti-HBc inappropriate for high-prevalence areas

Closing the Infectious Window by NAT

Kleinman, Lelie, Busch; Transfusion 2009;49:2454-89

Test performance characteristics

- Sensitivity
 - Shorten window, minimize false negatives
- Specificity
 - Reduce false positives
- Values should approach 100%
- Should be cited in product insert

Positive predictive value (PPV)

- Proportion of reactive results that are truly positive
- Even a test with high specificity may have a poor PPV when the prevalence is low
 - If test has specificity of 99.8%, then 20/10,000 samples will be false-positive
 - If prevalence of positives is 0.01%, then only 1/10,000 will be true positive
 - PPV will be 1/21= 4.8%!

Confirmatory testing

- Counselling requires accurate information
- Ideally, a different test method should be used for confirmation
- Minimal approach would be a second EIA
- Some methods suffer from generation of "indeterminate" results (e.g. western blot)

How to define risk of TTI

- Risk is the chance that a blood recipient will be transfused with an infectious blood unit
 - A direct function of the proportion of donations that are infectious and the number of units received
 - May be impacted by survival of agent in blood and the susceptibility of the recipient

Assessing the risk of TTI

- Determine frequency of new infection in transfused patients
 - Slow
 - May not be possible because of low frequency
- Estimate from available data
 - Donor populations prevalence, incidence, window period

Then: Risks when testing began American Red Cross System data

Blood Safety in the New Millennium; "Germs, gels, genomes", R. Dodd; AABB Press 2001

Marker	Method	Year	Rate
HBsAg	CEIP	1971	1:855
Anti-HIV-1	EIA	1985	1:2,631
Anti-HCV	EIA	1992	1:222

Transfusion-Transmitted Disease Post –Transfusion Hepatitis Risk: 1969-2005 observed at NIH

Year of Introduction of Test

After H. Alter

Now: Estimated Incidence and Residual Risk

(ARC estimates; Transfusion: Zou et al., 2009, 2010; Stramer et al., 2013)

Period	Agent	per 10 ⁵ PY	Window Period (days)	Donated Unit
2007-2008	HIV	3.1	9.1	1:1,467,000
2007-2008	HCV	5.1	7.4	1:1,149,000
2006-2008	HBV	3.4 [†]	38-30	1:280,000- 1:357,000*
2009-2011	HBV	1.6	38-30	1:592,000- 1:754.000*

29.2 - 21.2

1:765,000-

1:1,006,000*

PY = Person-Years of observation

[†]Estimated by two independent methods both based on HBsAg

^{*}Range combines estimates for the HBsAg-negative window period (38 vs 30 days)

HIV Window Period Transmissions in the US: during the 9-day WP (with NAT) All identified by Lookback

Year	State	Component	No. Pos Recipients
2000	TX	RBC	1
2002	FL	RBC/FFP	1/1
2002	MD	RBC/FFP	0/1
2006	GA	RBC/FP24	0/1
2008	CO	FFP	1

Thus, in total there were **5 wp donors** from which **6 of 8 recipients** of their products tested HIV pos (2 RBC and 4 FP with 2 RBC testing negative)

Window period risk

- Window period X incidence
 - Window period for key infections is known
- Incidence is the frequency of new infections, per person, per time
 - Can be determined directly for repeat donors
 - Seroconversions per person-year
 - Methods are available for first-time donors but most are relatively complex

Testing strategies

- Minimum expectations (WHO)
 - Syphilis, anti-HCV, anti-HIV, HBsAg
- Local conditions endemic infections
 - Chagas in SA, HTLV, malaria, etc
 - Note that some tests may be too wasteful of blood (eg anti-HBc)
- Environment and resources
- Financial
 - Cost-effectiveness

NAT

- Will it have a measurable impact?
- Does the infrastructure support it?
- Could the money be better spent?
- Is there public concern?
- If adopted, are there offsetting economies?
 - No anti-HBc, reduced confirmatory testing, etc.

Total Yield Cases by Year, ARC

Approximately 6 million donations per year

Take-home messages

- Testing for ID markers is a vital component of blood safety
- Minimal approach is serologic testing
- Residual risk is a function of window period and incidence
- Additional testing aims to reduce the window period
- Testing should be tailored to local needs and resources

